
sakyum Documentation
Release latest

Aug 18, 2023

CONTENTS

1 Table of content 3
1.1 Quick start . 3
1.2 Flags . 7
1.3 Error pages . 8
1.4 schoolsite project . 9
1.5 Admin user . 16
1.6 Custome auth . 17
1.7 Templates / file system . 22
1.8 Database migration . 23
1.9 Mod wsgi . 25
1.10 Deployment . 25
1.11 Sakyum on docker . 25

2 Useful links: 27

i

ii

sakyum Documentation, Release latest

WARNING This project has been totally renamed to flask-unity , official repository is https:
//github.com/usmanmusa1920/flask-unity

An extension of flask web framework that erase the complexity of structuring flask project blueprint, packages, and
other annoying stuffs.

The main reason behind the development of sakyum is to combine flask and it extensions in one place to make it
ease when developing an application without the headache (worrying) of knowing the tricks on how to connect those
extensions with flask, or import something from somewhere to avoid some errors such as circular import and other
unexpected errors. Also structuring flask application is a problem at some cases to some people, sakyum take care of
all these so that you only focus on writing your application views the way you want.

Sakyum depends on (come with) the following flask popular and useful extensions, these include: flask-admin for
building an admin interface on top of an existing data model (where you can manage your models in the admin page),
flask-bcrypt it provides bcrypt hashing utilities for your application, flask-login it provides user session management
for Flask. It handles the common tasks of logging in, logging out, and remembering your users’ sessions over extended
periods of time, flask-sqlalchemy It simplifies using SQLAlchemy with Flask by setting up common objects and patterns
for using those objects, such as a session tied to each web request, models, and engines, flask-wtf Simple integration of
Flask and WTForms, including CSRF, file upload, and reCAPTCHA. And possibly some other extensions / libraries.

When using sakyum, don’t be confuse with the the concept of project and app.

Project is the entire folder that contain your flask application, when you create project with the command:

python -c "from sakyum import project; project('schoolsite')"

It will create a parent directory with the name schoolsite also inside the schoolsite directory there is a directory with
thesame name of the parent directory schoolsite this directory is the one that most of configurations, registering and
other thing that are going to be implemented inside it.

Within that parent directory schoolsite it also generate a file called thunder.py this is the file that you will be running
along side with some positional arguments and flags. Also it will generate a directory called auth this directory contains
admin system utilities. Lastly it will generate templates and static directory for your site pages and it styles respectively.
At a glance, it will create schoolsite, thunder.py, templates, static, auth all in schoolsite.

App (application) is like to say a blueprint which greatly simplify how large applications work and provide a central
means for Flask extensions to register operations on applications. Read blueprint about flask.

Don’t worry if you didn’t get the concept of project and app, surely you will get it if we dive deep by the help of the
schoolsite project.

CONTENTS 1

https://flask-unity.readthedocs.io
https://github.com/usmanmusa1920/flask-unity
https://github.com/usmanmusa1920/flask-unity
https://flask.palletsprojects.com
https://flask-admin.readthedocs.io
https://flask-bcrypt.readthedocs.io
https://flask-login.readthedocs.io
https://flask-sqlalchemy.palletsprojects.com
https://flask-wtf.readthedocs.io
https://flask.palletsprojects.com/en/2.2.x/blueprints/
https://sakyum.readthedocs.io/en/latest/quick_start.html

sakyum Documentation, Release latest

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENT

1.1 Quick start

First we recomend you to create a virtual environment to avoid conflict (upgrade/downgrade of some of your system
libraries) when installing sakyum, this is just a recomendation, it still work even if you install it without using virtual
environment

Install and update the latest release from pypi. Basically the library was uploaded using sdist (Source Distribution) and
bdist_wheel (Built Distribution), this software (library) as from v0.0.9 it is compatible and also tested with windows
OS and others as well, such as linux, macOS and possibly some others too!.

You will notice we use –upgrade in the installation command, this will make sure it install the latest release from pypi
(in case you have a version which is not the latest), you can still ommit the –upgrade and use the version you want then
wait for the installation to finish.:

pip install --upgrade sakyum

This quick start will walk you through creating project called schoolsite and a basic application called exam in the
project. User will be able to register, login/logout, create exam questions/choices, and edit or delete their own ques-
tion/choices. All using sakyum, you will be able to clone it on github. it is located inside example directory of the base
repository.

1.1.1 Create flask project using sakyum

Now after the installation, let create a project called schoolsite to do so paste the following command on your termianl:

python -c "from sakyum import project; project('schoolsite')"

or create a file and paste the below codes which is equivalent of the above, and then run the file

from sakyum import project

project("schoolsite")

Both the command you type on terminal or the code you paste in a file (after running the file) will create a project called
schoolsite now cd into the schoolsite directory, if you do ls within the directory you just enter you will see a module
called thunder.py and some directories (some in the form of package) media, static, templates and a directory with
thesame name of your parent directory which is schoolsite.

Tree structure of the project using tree . command look like:

3

https://pypi.org/project/sakyum
https://github.com/usmanmusa1920/sakyum

sakyum Documentation, Release latest

.
media

default_img.png
schoolsite

config.py
__init__.py
routes.py
secret.py

static
schoolsite

index.js
media
style.css

templates
admin

index.html
schoolsite

index.html
thunder.py

8 directories, 10 files

Boot up the flask server by running the below command:

python thunder.py boot

Now visit the local url http://127.0.0.1:5000 this will take you to the index page of your project with some links in the
page.

1.1.2 Create flask project app using sakyum

Since we create a project, let create an app within the project. To start an app within the project (schoolsite) shutdown
the flask development server by pressing (CTRL+C). If you do ls in that same directory you will see it create a
default.db file (an sqlite file) which is our default database. Now run the following command in other to create your
app, by giving the name you want your app to be, in our case we will call our app exam:

python thunder.py create_app -a exam

or

python thunder.py create_app --app exam

this will create an app (a new package called exam) within the project (schoolsite), the -a flag is equivalent to –app
which is a flag for the app name in this example it is called exam
Now the tree . structure of the project after creating exam app look like:

.
default.db
exam

admin.py
forms.py
__init__.py

(continues on next page)

4 Chapter 1. Table of content

sakyum Documentation, Release latest

(continued from previous page)

models.py
views.py

media
default_img.png

schoolsite
config.py
__init__.py
routes.py
secret.py

static
exam

index.js
media
style.css

schoolsite
index.js
media
style.css

templates
admin

index.html
exam

index.html
schoolsite

index.html
thunder.py

12 directories, 19 files

You notice it create a package name with thesame name of the app (exam) with some files in it, also a directory named
exam inside templates and static folder with default html page together with css and js files (in static folder)

1.1.3 Register an app

Once the app is created it is time to register the app, to do so open a file schoolsite/routes.py and import your exam
app blueprint which is in (exam/views.py), default name given to an app blueprint, is the app name so our exam app
blueprint name is exam, after importing it, append (register) the app blueprint in a list called reg_blueprints in that
same file of schoolsite/routes.py
WARNING don't ommit the registered blueprint you see in the `reg_blueprints` list
(blueprint.default, blueprint.errors, blueprint.auth, base) blueprints just append
your app blueprint

importing blueprint

from exam.views import exam

after that, append it in the list reg_blueprints provided in the routes.py file by

registering blueprint

reg_blueprints = [
blueprint.default,

(continues on next page)

1.1. Quick start 5

sakyum Documentation, Release latest

(continued from previous page)

blueprint.errors,
blueprint.auth,
base,
exam,

]

once you register the app, boot up the flask webserver again by:

python thunder.py boot

This will bring the flask development server on port 5000 you can give it a different port by including a flag -p or –port
flag which is for port number:

python thunder.py boot -p 7000

or

python thunder.py boot --port 7000

The above command will bring the development serve on port 7000 visit the localhost url with the port number, it will
show you your project index page (schoolsite). To get to the app (exam) default page, visit the url with your app name
in our case:

http://127.0.0.1:7000/exam
this will take you to the app (exam) index page, and you can also vist the admin page with this url
http://127.0.0.1:7000/admin
Also, you can give your desire ip address/host by using -H or –host flag, e.g:

python thunder.py boot -p 7000 -H 0.0.0.0

or

python thunder.py boot --port 7000 --host 0.0.0.0

For development server, you can give a debug value to True by specifying -d flag or –debug e.g:

python thunder.py boot -p 7000 -d True

or

python thunder.py boot --port 7000 --debug True

You can change your default profile picture by moving to http://127.0.0.1:5000/admin/change_profile_image/ and se-
lect your new picture from your file system.

With this, you can do many and many stuffs now! From here you are ready to keep write more views in the app views.py
as well as in the project routes.py and do many stuffs just like the way you do if you use flask only.

Source code for this quick start is available at official github repository of the project.

6 Chapter 1. Table of content

http://127.0.0.1:5000/admin/change_profile_image/
https://github.com/usmanmusa1920/sakyum/tree/master/example/quick_start

sakyum Documentation, Release latest

1.2 Flags

Some useful flags that you can use along side, when your are running your application (project) along side with thun-
der.py file are as follows:

Flags associated with `create_app` positional argument:
Use -a or –app if you are about to create app in your project, that will capture the app name:

python thunder.py create_app -a blog

or

python thunder.py create_app --app blog

Flags associated with `boot` positional argument:
Use -p or –port if you want to give your desire port number instead of the default one which is 5000 It is use only if
you are about to bring up the server, after the positional argument of boot:

python thunder.py boot -p 7000

or

python thunder.py boot --port 7000

Use -H or –host if you are to give a different host, in the case of deployment. Also, it is use if you are about to bring
up the server, after the positional argument of boot:

python thunder.py boot -H 0.0.0.0

or

python thunder.py boot --host 0.0.0.0

Use -d or –debug if you want your app in debug mode. That mean ifyou make change, you need not to shutdown the
server and reload it again, it will do that automatically once you set it to True Also, it is use if you are about to bring
up the server, after the positional argument of boot:

python thunder.py boot -d True

or

python thunder.py boot --debug True

Flags associated with `create_user` positional argument:
Use -u or –username and then the username beside it, if you do not specify it, you will see a prompt saying Enter
username::

python thunder.py create_user -u network-engineer

or

python thunder.py create_user --username network-engineer

1.2. Flags 7

sakyum Documentation, Release latest

Use -e or –email and then the email beside it, if you do not specify it, you will see a prompt saying Enter email::

python thunder.py create_user -e network-engineer@datacenter.com

or

python thunder.py create_user --email network-engineer@datacenter.com

Use -p or –password and then the password beside it, if you do not specify it, you will see a prompt saying Enter
password::

python thunder.py create_user -p my-secret-pass

or

python thunder.py create_user --password my-secret-pass

1.3 Error pages

There are 12 default error pages that have been implemented in sakyum. These error pages include:

Error page of 400 for bad request

Error page of 401 for unauthorized

Error page of 403 for forbidden

Error page of 404 for not found

Error page of 406 for ot acceptable

Error page of 415 for unsupported media type

Error page of 429 for too many requests

Error page of 500 for internal server error

Error page of 501 for not implemented

Error page of 502 for bad gateway

Error page of 503 for service unavailable

Error page of 504 for gateway timeout

This tutorial will be a continuation of the quick start. As we see in the quick start we create a project called schoolsite
and an app inside the project called exam. Taking from there let continue by creating models in our exam app.

Note that, you can write your views or models like the way you usually write them when using flask without sakyum.
It work great, nothing change.

8 Chapter 1. Table of content

https://sakyum.readthedocs.io/en/latest/quick_start.html

sakyum Documentation, Release latest

1.4 schoolsite project

1.4.1 App models

Now we are going to create models for our exam app, the models are going to be two ExamQuestionModel and Exam-
ChoiceModel

To create these two models we have to go into our exam app models.py exam/models.py. We will notice some default
import:

from datetime import datetime
from schoolsite.config import db

Now below we are to start defining our model, let start with ExamQuestionModel model which will look like:

class ExamQuestionModel(db.Model):
""" Exam default Question model """
id = db.Column(db.Integer, primary_key=True)
date_posted = db.Column(db.DateTime, nullable=False, default=datetime.utcnow)
the user field is the user who create the question and he is in the `User` models of␣

→˓auth
user = db.relationship('User', backref='user')
user_id = db.Column(db.Integer, db.ForeignKey('user.id'))
question_text = db.Column(db.Text, nullable=False)
choices = db.relationship('ExamChoiceModel', backref='selector', lazy=True)

def __str__(self):
return f'{self.question_text}'

def __repr__(self):
return f'{self.question_text}'

the `ExamChoiceModel` is the choice model class below
the `selector` is the attribute that we can use to get selector who choose the choice
the `lazy` argument just define when sqlalchemy loads the data from the database

Now let define the ExamChoiceModel model which will look like:

class ExamChoiceModel(db.Model):
""" Exam default Choice model """
id = db.Column(db.Integer, primary_key=True)
date_posted = db.Column(db.DateTime, nullable=False, default=datetime.utcnow)
question_id = db.Column(db.Integer, db.ForeignKey('exam_question_model.id'),␣

→˓nullable=False)
you can pass a keyword argument of `unique=True` in the below choice_text field
that will make it unique across the entire table of choice
choice_text = db.Column(db.String(100), nullable=False)

def __str__(self):
return f'{self.choice_text}'

def __repr__(self):
return f'{self.choice_text}'

1.4. schoolsite project 9

sakyum Documentation, Release latest

After pasting them, save the file. From here we can now create a migration for our ExamQuestionModel and Exam-
ChoiceModel models using alembic, check how to create migration using alembic in sakyum, but we are going to skip
this and just play with api.

Play with api

Before we move further let us play with the model api. This is the continuation from the last tutorial where we stop,
when we make debug value to be True after registering the app (last tutorial)

From there shutdown the development server and go into the python shell (python interpreter), make sure you are
within that directory you boot up the server by typing python, once you are in the interpreter, start by importing your
db and bcrypt (for password hash) instance from project package (schoolsite), and also import the models you create
for your app in exam/models.py and the default User model located in auth.models.py:

from sakyum.contrib import bcrypt
from sakyum.auth.models import User
from schoolsite.config import db
from exam.models import ExamQuestionModel, ExamChoiceModel

Next call the create_all() method of db that will create the tables of our models and database (if it doesn’t create db
file). Run the below command.:

db.create_all()

After that let us create three users instance, that will be able to create question and choice of the ExamQuestionModel
and ExamChoiceModel model:

user1_hashed_pwd = bcrypt.generate_password_hash('123456').decode('utf-8')
user1 = User(username='backend-developer', email='developer@backend.com', password=user1_
→˓hashed_pwd)

user2_hashed_pwd = bcrypt.generate_password_hash('123456').decode('utf-8')
user2 = User(username='front-developer', email='developer@front.com', password=user2_
→˓hashed_pwd)

user3_hashed_pwd = bcrypt.generate_password_hash('123456').decode('utf-8')
user3 = User(username='quantum-developer', email='developer@quantum.com', password=user3_
→˓hashed_pwd)

Now we are to add and commit those users in our database:

db.session.add(user1)
db.session.add(user2)
db.session.add(user3)
db.session.commit()

To make sure our users have been added in our database let query the entire User model of our project by:

User.query.all()
[User('backend-developer', 'developer@backend.com', User('front-developer',
→˓'developer@front.com', User('quantum-developer', 'developer@quantum.com']

Yes, our users are in the database, good jod. The next thing now is to start creating our Questions and commit them to
our database:

10 Chapter 1. Table of content

https://sakyum.readthedocs.io/en/latest/database.html
https://sakyum.readthedocs.io/en/latest/quick_start.html#register-an-app

sakyum Documentation, Release latest

q1 = ExamQuestionModel(question_text='At which year Neil Armstrong landed in the moon?',␣
→˓user=user1)
q2 = ExamQuestionModel(question_text='What is odd in the choice?', user=user2)
q3 = ExamQuestionModel(question_text='What is not related to quantum?', user=user3)

db.session.add(q1)
db.session.add(q2)
db.session.add(q3)
db.session.commit()

To make sure our questions are in the database let query them to see by:

ExamQuestionModel.query.all()
[At which year Neil Armstrong landed in the moon?, What is odd in the choice?, What is␣
→˓not related to quantum?]

Yes, our questions are in the database, good jod. We are to capture our questions id (q1, q2 and q3) since they are the
once we are going to link to each choice:

the_q1 = ExamQuestionModel.query.get_or_404(1)
the_q2 = ExamQuestionModel.query.get_or_404(2)
the_q3 = ExamQuestionModel.query.get_or_404(3)

choices for our first question
c1_1 = ExamChoiceModel(choice_text='In 1969', question_id=the_q1.id)
c1_2 = ExamChoiceModel(choice_text='In 1996', question_id=the_q1.id)
c1_3 = ExamChoiceModel(choice_text='In 2023', question_id=the_q1.id)
c1_4 = ExamChoiceModel(choice_text='In 2007', question_id=the_q1.id)

choices for our second question
c2_1 = ExamChoiceModel(choice_text='python', question_id=the_q2.id)
c2_2 = ExamChoiceModel(choice_text='java', question_id=the_q2.id)
c2_3 = ExamChoiceModel(choice_text='linux', question_id=the_q2.id)
c2_4 = ExamChoiceModel(choice_text='ruby', question_id=the_q2.id)

choices for our third question
c3_1 = ExamChoiceModel(choice_text='qubit', question_id=the_q3.id)
c3_2 = ExamChoiceModel(choice_text='entanglement', question_id=the_q3.id)
c3_3 = ExamChoiceModel(choice_text='bit', question_id=the_q3.id)
c3_4 = ExamChoiceModel(choice_text='superposition', question_id=the_q3.id)

Now let add and commit the choice into database::
db.session.add(c1_1)
db.session.add(c1_2)
db.session.add(c1_3)
db.session.add(c1_4)

db.session.add(c2_1)
db.session.add(c2_2)
db.session.add(c2_3)
db.session.add(c2_4)

db.session.add(c3_1)
(continues on next page)

1.4. schoolsite project 11

sakyum Documentation, Release latest

(continued from previous page)

db.session.add(c3_2)
db.session.add(c3_3)
db.session.add(c3_4)

db.session.commit()

We can see choices related to our question number one (1) by:

ExamQuestionModel.query.get_or_404(1).choices
[In 1969, In 1996, In 2023, In 2007]

To see many other method related to our ExamQuestionModel.query by passing it into dir() function:

dir(ExamQuestionModel.query)

To see all choices in our database:

ExamChoiceModel.query.all()
[In 1969, In 1996, In 2023, In 2007, python, java, linux, ruby, qubit, entanglement,␣
→˓bit, superposition]

Also like the ExamQuestionModel.query we see above, we can see many other method related to our ExamChoice-
Model.query by passing it into dir() function:

dir(ExamChoiceModel.query)

Lastly let us make a loop over all question and print each question choices:

for question in ExamQuestionModel.query.all():
question
for choice in question.choices:
print('\t', f'{choice.id}: ', choice)

At which year Neil Armstrong landed in the moon?
1: In 1969
2: In 1996
3: In 2023
4: In 2007
What is odd in the choice?
5: python
6: java
7: linux
8: ruby
What is not related to quantum?
9: qubit
10: entanglement
11: bit
12: superposition

Since we insert something into the database, let move on, on how we can make those record to be display in the admin
page (by registering the models), because if now we logout from the python interpreter and boot up the server python
thunder.py boot -d True then navigate to admin page we won’t be able to see those models. We can do so below:

12 Chapter 1. Table of content

sakyum Documentation, Release latest

Register our models to admin

In other to register our model, we are to open a sub project folder and open the config.py file we see there (school-
site/config.py), within create_app function in the file, we are to import our app models (ExamQuestionModel, Ex-
amChoiceModel) that we want to register, above the method that will create the tables db.create_all() and we will see
a commented prototype above it:

""" You will need to import models themselves before issuing `db.create_all` """
from sakyum.auth.models import User
from sakyum.auth.admin import UserAdminView
from exam.models import ExamQuestionModel, ExamChoiceModel
from <app_name>.admin import <admin_model_view>
db.create_all() # method to create the tables and database

then we will append the models in the reg_models = [] list within admin_runner function (inner function of the
create_app function):

rgister model to admin direct by passing every model that you
want to manage in admin page in the below list (reg_models)
reg_models = [
User,
ExamQuestionModel,
ExamChoiceModel,

]

That will register our model in the admin page and we will be able to see it if we visit the admin page now! But this
kind of registering admin model is not convenient, the convenient way is to use what is called admin model view.

Register model in the form of admin model view

We can register our model in the form of model view by grouping models that are related.

To create these model view we have to go into our app admin.py exam/admin.py. We will notice some default import:

from flask_login import current_user
from flask import redirect, request, url_for
from flask_admin.contrib.sqla import ModelView

Now below we are to start defining our model view, I will call the model view QuestionChoiceAdminView which will
look like:

class QuestionChoiceAdminView(ModelView):
can_delete = True # enable model deletion
can_create = True # enable model deletion
can_edit = True # enable model deletion
page_size = 50 # the number of entries to display on the list view

def is_accessible(self):
return current_user.is_authenticated

def inaccessible_callback(self, name, **kwargs):
redirect to login page if user doesn't have access
return redirect(url_for('auth.adminLogin', next=request.url))

1.4. schoolsite project 13

sakyum Documentation, Release latest

The is_accessible method will check if a user is logged in, in other to show the QuestionChoiceAdminView model in
the admin page, else it just show the plain admin page without the QuestionChoiceAdminView.

The inaccessible_callback method will redirect user (who is not logged in) to the login page of the admin.

In other to register our model view, open the config.py file (schoolsite/config.py) and import our admin model view
(QuestionChoiceAdminView) below the import of our ExamQuestionModel and ExamChoiceModel which look like:

""" You will need to import models themselves before issuing `db.create_all` """
from sakyum.auth.models import User
from sakyum.auth.admin import UserAdminView
from exam.models import ExamQuestionModel, ExamChoiceModel
from exam.admin import QuestionChoiceAdminView
db.create_all() # method to create the tables and database

Now comment the ExamQuestionModel and ExamChoiceModel in the reg_models list, just like the way we comment
the User in the list, because if we didn’t comment it and we register our QuestionChoiceAdminView that mean we
register ExamQuestionModel and ExamChoiceModel twice and that will trow an error:

rgister model to admin direct by passing every model that you
want to manage in admin page in the below list (reg_models)
reg_models = [
User,
ExamQuestionModel,
ExamChoiceModel,

]

go below the function we call adminModelRegister in (within admin_runner function) after registering our UserAd-
minView and call the admin method called add_view and then pass your model view class as an argument, also pass
an arguments in the model view class, the first argument is the model class, the second is the db.session, and then last
give it a category (key word argument) in our case we will call it **category=’Question-Choice’ like:

admin.add_view(QuestionChoiceAdminView(ExamQuestionModel, db.session, name='Questions',␣
→˓category='Question-Choice'))
admin.add_view(QuestionChoiceAdminView(ExamChoiceModel, db.session, name='Choices',␣
→˓category='Question-Choice'))

Save the file, that will register your related model in the admin page and you will see them if you vist the admin page
http://127.0.0.1:5000/admin, only if you are logged in because of is_accessible method.

Now let navigate to http://127.0.0.1:5000/login and login using one of the user credential, we created when we were in
the python interpreter (shell), the one (user credential) that we are going to use is for the backend-developer (username:
backend-developer, password: 123456).

After we logged in, now if we navigate to http://127.0.0.1:5000/admin we are able to see our QuestionChoiceAdminView
view in the form of drop-down menu, if we click it, it will show list containing Questions and Choices only, since the
are the only once associated with that mode admin view. Now click the Questions this will show list of questions we
have inserted in the python shell.

Source code for the app models is available at official github repository of the project.

See more on how to write model view class at Flask-Admin documentation.

14 Chapter 1. Table of content

https://github.com/usmanmusa1920/sakyum/tree/master/example/app_models
https://flask-admin.readthedocs.io/en/latest/introduction/#customizing-built-in-views

sakyum Documentation, Release latest

1.4.2 HTML forms

We can instead of using html file to write our forms, we can use this form feature that will represent our form template
in the form of class and some methods.

To create forms we have to go into our app forms.py exam/forms.py. We will notice some default import:

from flask_wtf import FlaskForm
from wtforms import StringField, SubmitField, TextAreaField
from wtforms.validators import DataRequired, Length

Now below we are to start defining our forms, I will first start with QuestionForm form which will look like:

class QuestionForm(FlaskForm):
""" Exam default Question form """
question_text = TextAreaField('Question_Text', validators=[DataRequired()])
submit = SubmitField('create')

Now I will define the ChoiceForm model which will look like:

class ChoiceForm(FlaskForm):
""" Exam default Choice form """
question_id = StringField('Question_Id', validators=[DataRequired()])
choice_text = StringField('Choice_Text', validators=[DataRequired(), Length(min=2,␣

→˓max=20)])
submit = SubmitField('create')

Next is to go to our app views.py file exam/views.py and import the forms, make sure your follow the order of the
import (you will see a prototype commented in your app views.py file above) which look like:

from flask import (render_template, Blueprint)
from sakyum.utils import footer_style, template_dir, static_dir
from <project_name>.config import db
from .models import <app_models>
from .forms import <model_form>

Uncomment the fifth line, like:

from flask import (render_template, Blueprint)
from sakyum.utils import footer_style, template_dir, static_dir
from <project_name>.config import db
from .models import <app_models>
from .forms import QuestionForm, ChoiceForm

1.4.3 Advance tutorial

In this advance tutorial, we will expand our so long project (schoolsite), by creating another app called result in total
making our apps to be two in number (exam and result). It is an add-on on top of the previous one.

Source code for the quick start is available at official github repository of the project.

1.4. schoolsite project 15

https://github.com/usmanmusa1920/sakyum/tree/master/example/quick_start

sakyum Documentation, Release latest

1.5 Admin user

There are basically two ways in which you can create admin user. One is by using flags, second one is by prompt, and
the other one is by using (combining both the two prompt or flags).

Let say you start a project, and an app inside the project by the following command:

python -c "from sakyum import project; project('schoolsite')" && cd schoolsite && python␣
→˓thunder.py create_app -a exam

Admin user using flags:
This can be done by given the create_user position argument and flags together with their values e.g:

python thunder.py create_user -u network-engineer -e network-engineer@datacenter.com -p␣
→˓my-secret-pass

or

python thunder.py create_user --username network-engineer --email network-
→˓engineer@datacenter.com --password my-secret-pass

Warning: don’t use the -p flag to specify user password, do so only if you are testing (not in production) by just giving
the user username, and email address, then enter, where as the password will be prompt to enter it, like:

python thunder.py create_user -u network-engineer -e network-engineer@datacenter.com

Admin user using prompt:
This can be done by only given the create_user position argument and then hit tab, e.g:

python thunder.py create_user

once you run it, a prompt will come up to input admin user information, these include username, email, and password

Admin user using both `flags` and `prompt` :
Use -u or –username and then the username beside it, if you do not specify it, you will see a prompt saying Enter
username::

python thunder.py create_user -u network-engineer

or

python thunder.py create_user --username network-engineer

Use -e or –email and then the email beside it, if you do not specify it, you will see a prompt saying Enter email::

python thunder.py create_user -e network-engineer@datacenter.com

or

python thunder.py create_user --email network-engineer@datacenter.com

Use -p or –password and then the password beside it, if you do not specify it, you will see a prompt saying Enter
password::

16 Chapter 1. Table of content

sakyum Documentation, Release latest

python thunder.py create_user -p my-secret-pass

or

python thunder.py create_user --password my-secret-pass

1.6 Custome auth

Custom authentication for users

In this chapter we are going to see how we can write a custom authentication for users which will replace the default
route for our auth pages and instead of rendering the wtforms views, we are to use html form. To do so, sakyum already
have html form for that available in the [admin_register.html, admin_login.html, admin_change_password.html],
now what remain for us is to create an app (custom_auth) just like the way we create the exam app:

python thunder.py create_app -a custom_auth

after that, paste the following in the custom_auth views.py file:

First we are to replace the top import with the following:

import re
import os
import secrets
from werkzeug.utils import secure_filename
from flask import Blueprint, render_template, request, redirect, url_for, flash, send_
→˓from_directory, send_file
from sakyum.utils import footer_style, template_dir, static_dir
from flask_login import login_user, current_user, logout_user, fresh_login_required,␣
→˓login_required
from sakyum.contrib import db, bcrypt
from sakyum.auth.models import User
from .models import <app_models>
from .forms import <model_form>

UPLOAD_FOLDER = os.environ.get('FLASK_UPLOAD_FOLDER')
ORIGIN_PATH = os.environ.get('FLASK_ORIGIN_PATH')
ALLOWED_EXTENSIONS = os.environ.get('FLASK_ALLOWED_EXTENSIONS')

Route for register: the default route of adminRegister can be replace with:

@custom_auth.route('/admin/register/', methods=['POST', 'GET'])
@login_required
def adminRegister():
"""
The `admin_register.html` below is located in the sakyum package (templates/default_

→˓page/admin_register.html)
"""
if request.method == 'POST':

username = request.form['username']
email = request.form['email']

(continues on next page)

1.6. Custome auth 17

sakyum Documentation, Release latest

(continued from previous page)

password1 = request.form['password1']
password2 = request.form['password2']
username check
check_username = User.query.filter_by(username=username).first()
if check_username:
flash(f'This username `{check_username}` has been taken!', 'error')
return redirect(url_for('custom_auth.adminRegister'))

email check
check_email = User.query.filter_by(email=email).first()
if check_email:
flash(f'This email `{check_email}` is taken, choose a different one.', 'error')
return redirect(url_for('custom_auth.adminRegister'))

checking email pattern using regex
pattern = re.compile(r'^[a-zA-Z0-9-_]+@[a-zA-Z0-9]+\.[a-zA-Z0-9]+')
if not re.match(pattern, email):
flash(f'Please use a valid email', 'error')
return redirect(url_for('custom_auth.adminRegister'))

password check
if len(password1) < 6 or len(password2) < 6:
flash('Password must be not less than 6 character', 'error')
return redirect(url_for('custom_auth.adminRegister'))

if password1 == password2:
hashed_password = bcrypt.generate_password_hash(password2).decode('utf-8')
user_obj = User(username=username, email=email, password=hashed_password)
db.session.add(user_obj)
db.session.commit()
flash(f'Account for {username} has been created!', 'info')
return redirect(url_for('custom_auth.adminLogin'))

else:
flash(f'The two password fields didn\'t match', 'error')

context = {
'head_title': 'admin register',
'footer_style': footer_style,

}
return render_template('admin_register.html', context=context)

Route for login the default route of adminLogin can be replace with:

@custom_auth.route('/admin/login/', methods=['POST', 'GET'])
def adminLogin():
"""
The `admin_login.html` below is located in the sakyum package (templates/default_page/

→˓admin_login.html)
"""
if current_user.is_authenticated:
return redirect(url_for('base.index'))

if request.method == 'POST':
username = request.form['username']
password = request.form['password']
user = User.query.filter_by(username=username).first()
if user and bcrypt.check_password_hash(user.password, password):
"""

(continues on next page)

18 Chapter 1. Table of content

sakyum Documentation, Release latest

(continued from previous page)

Parameters:
user (object) - The user object to log in.

remember (bool) - Whether to remember the user after their session expires.␣
→˓Defaults to False.

duration (datetime.timedelta) - The amount of time before the remember cookie␣
→˓expires. If None the value set in the settings is used. Defaults to None.

force (bool) - If the user is inactive, setting this to True will log them in␣
→˓regardless. Defaults to False.

fresh (bool) - setting this to False will log in the user with a session marked␣
→˓as not “fresh”. Defaults to True.

"""
login_user(user, remember=True)
flash('You are now logged in!', 'success')
next_page = request.args.get('next')
return redirect(next_page) if next_page else redirect(url_for('admin.index'))

else:
flash('Login Unsuccessful. Please check username and password', 'error')

context = {
'head_title': 'admin login',
'footer_style': footer_style,

}
return render_template('admin_login.html', context=context)

Route for change password the default route of adminChangePassword can be replace with:

@custom_auth.route('/admin/change/password/', methods=['POST', 'GET'])
@fresh_login_required
def adminChangePassword():
"""
The `admin_change_password.html` below is located in the sakyum package (templates/

→˓default_page/admin_change_password.html)
"""
if request.method == 'POST':

old_password = request.form['old_password']
password1 = request.form['password1']
password2 = request.form['password2']
password check
if len(password1) < 6 or len(password2) < 6:
flash('Password must be not less than 6 character', 'error')
return redirect(url_for('custom_auth.adminChangePassword'))

user = User.query.filter_by(username=current_user.username).first()
if user and bcrypt.check_password_hash(user.password, old_password):
if password1 == password2:
hashed_password = bcrypt.generate_password_hash(password2).decode('utf-8')
user.password = hashed_password
db.session.commit()
flash('Your password has changed!', 'success')
return redirect(url_for('custom_auth.adminLogin'))

(continues on next page)

1.6. Custome auth 19

sakyum Documentation, Release latest

(continued from previous page)

else:
flash('The two password fields didn\'t match', 'error')

else:
flash('Cross check your login credentials!', 'error')

context = {
'head_title': 'admin change password',
'footer_style': footer_style,

}
return render_template('admin_change_password.html', context=context)

Route for logout the default route of adminLogout can be replace with:

@custom_auth.route('/custom_admin/logout/', methods=['POST', 'GET'])
@login_required
def adminLogout():
logout_user()
flash('You logged out!', 'info')
return redirect(url_for('custom_auth.adminLogin'))

Route and functions for changing image and it route can be replace with:

def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

@custom_auth.route('/profile_image/<path:filename>')
@login_required
def profile_image(filename):
"""
This function help to show current user profile image, it won't download it
like the `download_file` function below does
"""
return send_file(UPLOAD_FOLDER + '/' + filename)

@custom_auth.route('/media/<path:filename>')
@login_required
def download_file(filename):
"""
If we use this to show current user profile image, it won't show instead it will␣

→˓download it,
so it meant for downloading media file
"""
return send_from_directory(UPLOAD_FOLDER, filename, as_attachment=True)

def picture_name(pic_name):
random_hex = secrets.token_hex(8)
_, f_ext = os.path.splitext(pic_name)
picture_fn = random_hex + f_ext
new_name = _ + '_' + picture_fn
return new_name

(continues on next page)

20 Chapter 1. Table of content

sakyum Documentation, Release latest

(continued from previous page)

@custom_auth.route('/custom_admin/change_profile_image/', methods=['POST', 'GET'])
@login_required
def changeProfileImage():
if request.method == 'POST':
check if the post request has the file part
if 'file' not in request.files:
flash('No file part')
return redirect(request.url)

file = request.files['file']
If the user does not select a file, the browser submits an
empty file without a filename.
if file.filename == '':

flash('No selected file')
return redirect(request.url)

if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
file_name = picture_name(filename)
file.save(os.path.join(UPLOAD_FOLDER, file_name))
user = User.query.filter_by(username=current_user.username).first()
if user:
if user.user_img != 'default_img.png':

r = str(ORIGIN_PATH) + '/media/' + user.user_img
if os.path.exists(r):
os.remove(r)

user.user_img = file_name
db.session.commit()

flash('Your profile image has been changed!', 'success')
return redirect(url_for('base.index')) # it will redirect to the home page

context = {
'head_title': 'admin change profile image',
'footer_style': footer_style,

}
return render_template('admin_change_profile_image.html', context=context)

After all of the above, now open your project routes.py file (schoolsite/routes.py) and import your custom_auth
blueprint:

from custom_auth.views import custom_auth

then pass it into the reg_blueprints list in other to register it by:

reg_blueprints = [
blueprint.default,
blueprint.errors,
blueprint.auth,
base,
exam,
custom_auth,

]

This will overwrite the default auth system for those routes. You can open the default admin page within your project

1.6. Custome auth 21

sakyum Documentation, Release latest

(templates/admin/index.html) and overite it with:

<!-- @sakyum, schoolsite (project) admin index.html page -->
{% extends 'admin/master.html' %}
{% block body %}
Go to schoolsite home page

{% if current_user.is_authenticated %}
logout

change password

register

change image

{% else %}
login

{% endif %}
{% endblock body %}

Even the User model can be overwrite, but make sure to go all the files and import it from the custom_auth model instead
of from sakyum. Note: the creation of a user using the python thunder.py create_user command
won't work for the custom model.

Source code for the custom auth is available at official github repository of the project.

1.7 Templates / file system

Templates and static folder for each blueprint is located within (in side) the base templates/static directory, with thesame
name of the bluprint, e.g let say we create an app exam in our project called schoolsite within the templates directory
it will create (templates/exam) also for the static too (static/exam)

1.7.1 Customise admin page

A default directory in which you can customise admin page is created in the (templates/admin) directory with a default
index.html file that contains some links. You can style it with different css and js file, but make sure it is extended
from {% extends ‘admin/master.html’ %} and anything else wrap it within the body block {% block body %} {%
endblock body %}

1.7.2 File system storage

The default directory where files will be saved is media which is in the project directory. In the media directory there
is a default user profile image called default_img.png, and if user change profile image it will be available (saved the
new image) in that directory.

22 Chapter 1. Table of content

https://github.com/usmanmusa1920/sakyum/tree/master/example/custom_auth

sakyum Documentation, Release latest

1.8 Database migration

Welcome to the chapter that will talk about how to do database migration with alembic. By default the database that
it (sakyum) come with is an sqlite database with naming convention of default.db located in the parent folder of your
project. The main talk here is to show how we can make database migrations and stuffs like that.

Migrations are very powerful and let you change your models over time, as you develop your project, without the need
to delete your database or tables and make new ones - it specializes in upgrading your database live, without losing
data. More will be gist later.

Alembic is a very useful library we can use for our database migrations. when we are working with Flask Framework
we need a tool which can handle the database migrations. Alembic is widely used for migrations. Alembic version
1.10.2 come with (Mako=1.2.4, MarkupSafe=2.1.2, SQLAlchemy=2.0.7, greenlet=2.0.2, typing-extensions=4.5.0) ex-
tensions, let us start how to use alembic.

First we need to initialize the alembic to our working project directory (parent) directory, by running the following
command:

alembic init alembic

After running this command you will see some files and folders are created in your project directory they are alembic
and alembic.ini the tree structure of the alembic directory is:

alembic
env.py
README
script.py.mako
versions

1 directory, 3 files

Notice there will be no version files in your versions directory (alembic/versions) because we haven’t made any migra-
tions yet. Now to use alembic we need to do certain changes in these files. First, change the sqlalchemy.url in your
alembic.ini file, and give it your reletive default.db path, ours look like:

for the default.db file
sqlalchemy.url = sqlite:////home/usman/Desktop/schoolsite/default.db

for mysql (if you are using mysql database)
sqlalchemy.url = mysql+mysqldb://root:root@localhost:3306/database_name

for postgresql (if youare using postgres database)
sqlalchemy.url = postgresql://user:user@localhost/test

After giving your database url, open a file that it generate in the alembic directory alembic/env.py find a variable called
target_metadata = None, above it import your app models and the db instance of your application and replace the value
of None with db.Model.metadata like in the below snippets:

from exam.models import ExamQuestionModel, ExamChoiceModel
from sakyum.contrib import db
target_metadata = db.Model.metadata

For Autogenerating Multiple MetaData collections, you can pass a list of models instead e.g:

1.8. Database migration 23

sakyum Documentation, Release latest

from myapp.mymodel1 import Model1Base
from myapp.mymodel2 import Model2Base
target_metadata = [Model1Base.metadata, Model2Base.metadata]

Lastly make the migrations (Create a Migration Script) by runnig the following command:

alembic revision --autogenerate -m "Added tables"

Before, in the alembic/versions directory there is nothing inside, but now after running the above command, alembic
generate our first migration commit file in versions folder (alembic/versions), you can see the version file now in the
versions folder, for simplicity the structure look like:

alembic
env.py
__pycache__

env.cpython-310.pyc
README
script.py.mako
versions

ac25f12f55b0_added_tables.py
__pycache__

ac25f12f55b0_added_tables.cpython-310.pyc

3 directories, 6 files

Every commit we did, it will generate the migration file in the (alembic/versions) directory.

Once this file generates we are ready for database migration. To migrate we are to run:

alembic upgrade head

Once you run the above command your tables will be generated in your database. This is how to use alembic for your
database, there are many you can do so, hit to the alembic website for more clarification.

Each time the database models change, repeat the migrate and upgrade commands.

1.8.1 Hint

• To make migrations (Create a Migration Script):

alembic revision –autogenerate -m “Added table”

• To migrate (Running our Migration):

alembic upgrade head

• Getting Information:

alembic current

alembic history –verbose

• Downgrading, We can illustrate a downgrade back to nothing, by calling alembic downgrade back to the begin-
ning, which in Alembic is called base:

alembic downgrade base

Source code for the database migration is available at official github repository of the project.

24 Chapter 1. Table of content

https://alembic.sqlalchemy.org
https://github.com/usmanmusa1920/sakyum/tree/master/example/database_migrations

sakyum Documentation, Release latest

1.9 Mod wsgi

Documentations of this page is under development (very soon) it will be available to public stay update, Thank you

1.10 Deployment

Documentations of this page is under development (very soon) it will be available to public stay update, Thank you

1.11 Sakyum on docker

This repo contains code to spin up a boilerplate sakyum project with Docker Compose. To run sakyum with docker
compose, first pull it by:

docker pull usmanmusa/sakyum

Next you are to clone the github repo of the project in other to get the docker-compose.yml by:

git clone https://github.com/usmanmusa1920/sakyum.git

Now cd into the project folder you just clone to spin up the services using the command:

cd sakyum/example/sakyum_demo

To spinup the services, run the command:

docker-compose up

you can use the command below instead of the above, in other to see how it build the image:

docker-compose up --build

Once the services build up, you can visit it at http://0.0.0.0:5000, also you can login with these credentials, where
username is: backend-developer and the password is: 123456

Bonus usage

Inspect volume:

docker volume ls

and:

docker volume inspect <volume name>

Prune unused volumes:

docker volume prune

View networks:

docker network ls

Bring services down:

1.9. Mod wsgi 25

sakyum Documentation, Release latest

docker-compose down

Open a bash session in a running container:

docker exec -it <container ID> sh

Source code for the database migration is available at official github repository of the project.

26 Chapter 1. Table of content

https://github.com/usmanmusa1920/sakyum/tree/master/example/sakyum-docker

CHAPTER

TWO

USEFUL LINKS:

• Repository

• PYPI Release

27

https://github.com/usmanmusa1920/sakyum
https://pypi.org/project/sakyum

	Table of content
	Quick start
	Create flask project using sakyum
	Create flask project app using sakyum
	Register an app

	Flags
	Error pages
	schoolsite project
	App models
	Play with api
	Register our models to admin
	Register model in the form of admin model view

	HTML forms
	Advance tutorial

	Admin user
	Custome auth
	Templates / file system
	Customise admin page
	File system storage

	Database migration
	Hint

	Mod wsgi
	Deployment
	Sakyum on docker

	Useful links:

